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ABSTRACT 

The goal of the Management System for Heterogeneous Networks (MSHN) is 

to support the execution of multiple, disparate, adaptive applications in a dynamic, 

distributed heterogeneous environment. MSHN consists of multiple, eventually repli- 

cated, distinct distributed components that themselves execute in a heterogeneous 

environment. This thesis answers the question: Is the performance of current imple- 

mentations of the Common Object Request Broker Architecture (CORBA) sufficient 

to support MSHN's inter-component communication? 

This research focuses on the applicability of communication mechanisms from 

the CORBA 2.2 specification to MSHN. After a careful literature search, we identified 

four mechanisms for further examination: the Static Invocation Interface (SII), the 

Dynamic Invocation Interface (DII), the Typed Event Service and the Untyped Event 

Service. Our rationale for selecting these mechanisms includes scalability, flexibility, 

extensibility, portability, maintainability, and manageability for the MSHN system. 

We implemented a prototype of MSHN's communication infrastructure us- 

ing each of these four mechanisms and measured their run-time performance. The 

overhead added by CORBA for distributed component communication of the MSHN 

system varied from a low of 10.6 milliseconds per service request to a high of 279.1 

milliseconds per service request on UltraSparclO boxes running the Solaris 2.6 Oper- 

ating System and connected via 100 Mbits/sec Ethernet. We therefore conclude that 

using CORBA mechanisms will not only substantially decrease the amount of time 

required to implement MSHN, but if used appropriately they will not substantially 

degrade performance. 
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I.        INTRODUCTION 

In the Heterogeneous Processing Laboratory at the Naval Postgraduate School, 

we are designing, implementing, and testing a resource management system called the 

Management System for Heterogeneous Networks (MSHN). MSHN is part of the De- 

fense Advanced Research Projects Agency (DARPA) sponsored Quorum program. 

MSHN's goal is to support the execution of multiple, disparate, adaptive applica- 

tions in a dynamic, distributed heterogeneous environment. To accomplish this goal, 

MSHN consists of multiple, eventually replicated, distinct distributed components 

that themselves execute in a heterogeneous environment. These components will 

have widely varying functionality, will come in and out of existence, will communicate 

via heterogeneous networks, and will execute on different platforms. These system 

components are also likely to be written in different programming languages. We 

can, of course, at the expense of a great deal of programmer's time, implement from 

scratch, specialized naming services to locate the appropriate component at run-time 

and specialized communication mechanisms to enable communication between these 

heterogeneous platforms. Alternatively, we can use a general tool, such as Common 

Object Request Broker Architecture (CORBA), to achieve the same functionality 

while reducing the development time. Experience with generalized systems such as 

CORBA, has revealed that the reduced development time cost comes at the expense 

of run-time performance, which can be critical, in real-time applications. This thesis, 

therefore, investigates the utility and overhead of communication mechanisms from 

the CORBA 2.2 specification to support MSHN's inter-component communication. 

To build MSHN's communication infrastructure, we identified four mechanisms 

from CORBA 2.2 specification for run-time performance examination: the Static In- 

vocation Interface (SII), the Dynamic Invocation Interface (DII), Typed Event Ser- 

vice, and Untyped Event Service. After settling on these four mechanisms, we im- 

plemented a prototype of MSHN's communication infrastructure using each of them, 



and measured their respective run-time overhead. 

A.     MOTIVATION 

In this section, we discuss the current computing environment of the Depart- 

ment of Defense (DoD). Observing this environment, we can understand the eco- 

nomical and technical reasons for DoD's move towards COTS. After defining the 

concepts, open systems, industry standards, and middleware, we review the 

relationships between them. Additionally, we describe the effects of these concepts 

on the information technology market. We conclude the section by explaining why 

we examined middleware, i.e., CORBA, for our MSHN architecture. 

DoD has a great amount and variety of computing hardware. Some of this 

hardware was designed to run a particular set of application programs, while other 

hardware is general purpose in nature and may run a broad variety of applications. 

Many of these physically dispersed machines are connected via networks and the 

Internet, and therefore make up a distributed, heterogeneous computing base [Ref. 

1]. With decreasing defense budgets and a vast, connected, heterogeneous hardware 

base, the challenge is to maximize the throughput of the jobs using the existing 

heterogeneous, distributed resources while minimizing the cost for interconnecting 

these resources without compromising the DoD specific requirements (e.g., run-time 

performance, reliability, and accuracy of the systems). Additionally, systems and 

applications should be developed so that they can easily be extended to fulfill future 

needs. In particular, a major DoD goal is to enable the warfighter to exchange 

classified and unclassified, tactical and non-tactical, information across platforms at 

shore and at sea. These exchanges should appear to be seamless to the actual user 

and should not create any new proprietary systems or require additional costs for 

research and development (R&D). Therefore, DoD, and especially the Navy, looks 

toward commercial-off-the-shelf (COTS) software to address this challenge. 

There are a number of reasons to use COTS in the DoD environment, even 



though such use was uncommon just a few years ago. The primary reasons for moving 

towards COTS are the low initial purchase cost and the short development time. 

With downsizing, and decreasing defense budgets, DoD can no longer substantially 

subsidize the computer industry. COTS reduces the amount of time and money 

required for software development projects. Another reason for moving towards COTS 

is that they provide more interoperability if they follow industry standards. In an 

environment where COTS products facilitate seamless interoperability, large system 

designs will evolve more easily and quickly. 

A major direction of COTS today is towards enterprise computing, open sys- 

tems, and industry standards. Here, the term enterprise refers to a reasonably large 

organizational unit, i.e., a service branch of the Armed Forces, the entire DoD, or a 

large branch of a company. From an information technology (IT) point of view, a 

typical enterprise consists of a wide variety of different, almost always multi-vendor, 

hardware and software running different applications for different domains. Examples 

of military domains include acquisition, word processing, intelligence, and weather 

forecasting. 

Today, corporate strategists favor linking all of their resources into a single 

enterprise that will enable all of their employees to share not only the resources, but 

also information. Additionally, they want to extend their businesses by linking their 

enterprise-wide systems with those of their business partners, suppliers, distributors, 

and customers. To interconnect all of these systems, and to move data from one 

system to another, these multi-vendor systems must seamlessly interoperate with one 

another. Furthermore, any new application must be designed and implemented in 

such a way that its development will not allow a particular hardware or software 

vendor to obtain a monopoly and hence, prevent the users from taking advantage of 

truly new technology. 

Open system applications are, by definition, intended to be source code portable 

across platforms in order to prevent such problems. In addition, as the applications 



and the systems grow in scope, the IT department of an enterprise must be able 

to move the applications or the information to a different solution platform without 

much difficulty. On the other hand, the benefits of open systems cannot be attained 

without industry standards. Organizations that are dependent upon one vendor's 

solutions and who are trying to alter 

• any of the vendor's methods, 

• the management or operating system, or 

• the hardware architecture, 

will do so only at great expense. Generally, enterprises that have utilized proprietary 

solutions have invested a large amount in applications, documentation, and trained 

employees, for an existing proprietary system. Any change in these systems will 

cause loss of most of these investments, and will also require time to implement new 

systems to replace the old ones. Today, the challenges for CIO's, who are currently 

using proprietary systems, are (1) when and if they should move to a new system, and 

(2) whether they should choose a less expensive vendor specific solution, or generally 

more expensive open system solution. 

" The battlefield is a scene of constant chaos. The winner will be the one that 

best controls chaos, both his own and that of his enemy." [Napoleon Bonaparte] The 

IT market is in chaos. The vendors are absorbing generic industry standards and 

extending them with new non-standard features to force the customers to depend 

on their product for particular domain solutions. In this case, the customers work 

hard to prevent dependence upon vendor specific solutions." Therefore, determine 

the enemy's plans and you will know which strategy will be successful and which will 

not." [Sun Tzu] Hence, the military must recognize the vendors' strategies and respond 

to them accordingly. The military might benefit from considering this situation as 

a two-player, zero-sum, non-cooperative game. The vendors are trying to increase 

their market share, whereas the customers (including the military) must ensure that 



their computing solutions are flexible. Game theory tells us that the best the player 

can do is to choose either the dominant strategy equilibrium or the Nash equilibrium. 

The first is a player choosing the best action that is a response against any action 

the other might take (fire-look). The latter is a player choosing the best action that 

is a response to the action the other takes (look-fire). In this game, the vendors and 

the customers encounter one another in a repeated environment. This environment 

introduces two important new elements into the game. First, players can think in 

terms of contingent strategies. The customers' decision may depend on the history 

of the computer industry. Second, in repeated play the present is not the only thing 

which affects the decision. Especially, in the computing industry the future is as 

important as the present. [Ref. 2] 

An alternative to open solutions is third party software. Although third party 

software might be inexpensive, organizations have found that with this solution, they 

not only are still forced into using proprietary systems, but also they lose much of 

the competitive edge provided by IT. 

Before we narrow our focus in open systems to middleware, which is the glue 

supporting interoperability within and between distributed systems, we would like to 

differentiate a software architecture from a software product. A software architecture 

consists of a set of definitions, rules, and terms that are used as guidelines to build a 

product. A product, on the other hand, is a specific implementation of an architecture 

by a vendor. Open architectures are often based on industry standards, so that they 

can survive the economical and technical lifetime of more than one product and can 

themselves form the basis of a new standard to satisfy evolving needs. [Ref. 3] 

Since one of our objectives in this thesis is the interoperability and portability 

of MSHN in heterogeneous, distributed networks, we will focus on middleware. Con- 

ceptually, middleware is the glue between the system components in a heterogeneous 

environment. When a client component uses a pre-defined application-programming 

interface (API) to invoke a service over a network, the middleware transmits the 



client's request over the network to the server component. It is also responsible for 

conveying the resulting response back to the client component. In this paradigm, the 

components are not aware of their different platforms and different data representa- 

tions. Thus, middleware helps to integrate system components across a distributed, 

heterogeneous environment. In particular, middleware, while distributing the process- 

ing load among multiple heterogeneous systems, should allow components executing 

on very different platforms to interact and to share resources and information. 

The goal of military information technology for the 21st century is shifting 

from platform centric to network centric warfare. We need the ability to get real-time 

information to the warrior in the field who is using a palm-top, and to the warrior 

at sea who is using a desktop PC. In many instances, the information needed by 

the warrior must be obtained from an application running on a computer with more 

power than the one that the warrior has in hand. In this case, results must be sent to 

the warrior's machine. This heterogeneity of the mission-critical military applications 

and the need for the interoperability motivates the use of middleware. 

B.     SCOPE OF THESIS 
This research focuses on the applicability of communication mechanisms from 

the CORBA 2.2 specification to MSHN. MSHN is a resource management system 

for heterogeneous networks. MSHN addresses the challenge of supplying quality of 

service for the adaptive, mission-critical applications in a distributed, heterogeneous 

environment. MSHN itself consists of distributed components residing in a heteroge- 

neous environment to accomplish its goal. Thus, we looked into the communication 

mechanisms of CORBA. After a careful literature search, we identified four mech- 

anisms for further examination: the Static Invocation Interface (SII), the Dynamic 

Invocation Interface (DII), Typed Event Service and Untyped Event Service. Our 

rationale for selecting these mechanisms includes scalability, flexibility, extensibility, 

portability, maintainability, and manageability for the MSHN system. After settling 



on these four mechanisms, we implement a prototype of MSHN's communication 

infrastructure using each of them, and measure their respective run-time overhead. 

C.     ORGANIZATION 

This thesis is organized as follows: Chapter II overviews MSHN's client/server 

architecture. Chapter III discusses relevant sections of CORBA 2.2 specification. It 

introduces OMG's Object Management Architecture (OMA) Reference Model, de- 

scribes CORBA's method invocation mecanisms and reviews two CORBA services 

used in this research: the Naming and Event Services. Chapter IV describes the 

designs of our four prototypes. In particular, it covers the problems we encountered 

with CORBA communication mechanisms and our solutions. It also discusses the 

methodology of the tests we used to determine the overhead added using CORBA 

and reports the results of those tests. In the final chapter, we summarize our results, 

the lessons we learned, and we propose future work. 





II.        MSHN'S CLIENT/SERVER 
ARCHITECTURE 

In this chapter, we will briefly introduce MSHN (the Management System for 

Heterogeneous Networks) and discuss MSHN's client/server architecture. We will 

also enumerate the components of MSHN and define briefly the interaction between 

these components. 

A. PURPOSE 

In the Heterogeneous Processing Laboratory at the Naval Postgraduate School, 

we are designing, implementing, and testing a resource management system called the 

Management System for Heterogeneous Networks (MSHN1) which is supported by 

the Defense Advanced Research Projects Agency's (DARPA) QUORUM program. 

MSHN's goal is to support the execution of multiple, disparate, adaptive applica- 

tions in a dynamic, distributed heterogeneous environment. To accomplish this goal, 

MSHN consists of multiple, eventually replicated, distinct distributed components 

that themselves execute in a heterogeneous environment. These components will have 

widely varying functionality, will come in and out of existence, will communicate via 

heterogeneous networks, and will execute on different platforms. 

B. MSHN'S PROPOSED ARCHITECTURE 

The MSHN architecture, and the Common Object Request Broker Architec- 

ture (CORBA) are both still evolving. This thesis studies the feasibility of using 

mechanisms from CORBA's latest version, CORBA 2.2, to facilitate the interactions 

between the MSHN components. Although we expect that the final design of MSHN 

may differ slightly from the current one, we do not anticipate the need for additional 

Pronounced "mission" 
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Figure 1. MSHN Conceptual Architecture 

components.   MSHN architecture consists of multiple instantiations of each of the 

components enumerated below: 

• a Client Library (one for each executing application to be managed by MSHN), 

• a Scheduling Advisor (hierarchically replicated), 

• a Resource Requirement Database (hierarchically replicated), 

• a Resource Status Server (hierarchically replicated), and 

• a MSHN Daemon (one for each computing resource). 

This thesis analyzes the communication overhead between the system com- 

ponents that is due to the use of generalized middleware, CORBA. Figure 1, the 

MSHN Conceptual Architecture, shows all of the components, which are shaded, as 

translucent layers executing on distributed platforms. A translucent layer is one 

that can be bypassed by layers that are above or below it. For example, the MSHN 

Daemon (mshnd) can interact directly with the operating systems, bypassing all of 

the Resource Status Server, the Resource Requirement Database and the Schedul- 

ing Advisor. In the environment that MSHN supports, both MSHN and non-MSHN 
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Figure 2. Example MSHN Physical Instantiation 

applications may be executing at any given time. Figure 2 illustrates how these 

components might actually be distributed among different heterogeneous machines. 

CORBA mechanisms, particularly the Internet Inter-ORB Protocol (HOP), can be 

used to facilitate communication between components. 

Because this thesis investigates facilitating communication between the com- 

ponents, the MSHN description in the remainder of this chapter emphasizes the inter- 

actions between the components. We have included brief descriptions of the function- 

ality of each of the components in Appendix B. For further information, the reader 

may refer to a technical report describing the entire project [Ref. 4]. 

Figure 3, MSHN's Software Architecture, illustrates all of the interactions 

between the system components. MSHN has a peer-to-peer architecture. In peer- 

to-peer architecture, the client can request a service from any server in the system, 

i.e. the MSHN Daemon must not go through the Scheduling Advisor to update the 

11 
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Figure 3. MSHN's Software Architecture 

Resource Status Server or Resource Requirement Database. 2 

We now present two-tier and three-tier views to give a clear understanding 

of the interactions between the system components. Typically, many applications, 

each linked with the MSHN Client Library will be running at any given time. They 

will need to communicate with a Scheduling Advisor (SA), possibly via the MSHN 

Daemon, to request appropriate resources for starting new processes. They may also 

communicate with a MSHN Daemon when receiving their recommended schedule. 

Additionally, the Client Libraries update the Resource Requirement Database (RRD) 

and the Resource Status Server (RSS) with the expected resource requirements of 

the applications, and current resource availability within the MSHN system. Figure 

2In distributed systems, callbacks are useful in supplying asynchronous communication. Call- 
backs transmit notification of events without blocking the event originator. Callbacks flow from the 
servers towards the clients. When callbacks are used the client and the server have a peer-to-peer 
relationship. 
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Figure 4. Two-tiered Architectural View of MSHN Architecture 

4 illustrates this updating interaction as a two-tiered client/server architecture. The 

update frequency of the Resource Status Server is expected to be high so that it, in 

turn, can supply the Scheduling Advisor with accurate, current information. 

We anticipate that the frequency of the updates will cause excessive network 

load and a considerable processing load on the Resource Status Server and the Re- 

source Requirement Database. To avoid these loads, MSHN's design includes proxy 

Resource Status Servers and Resource Requirement Databases that will come in and 

out of existence, as they are required to minimize the number of updates. These 

proxies will filter gathered information and update the hierarchical Resource Status 

Server and the hierarchical Resource Requirement Database when necessary. 

The Scheduling Advisor resides between the information needed to schedule 

(the Resource Status Server and the Resource Requirement Database) and the re- 

questers of schedules (applications linked with the Client Library), which indicates 

that there will be a high communication rate to and from the Scheduling Advisor. We 

can therefore also view MSHN as having three tiers, where the Scheduling Advisor 

is the second tier, and the Resource Status Server and the Resource Requirement 

Database are in the third tier (see Figure 5). When the MSHN Daemon contacts the 

13 
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Figure 5. Three-tiered View of MSHN 

Scheduling Advisor on behalf of a Client Library for a schedule, the Scheduling Advi- 

sor queries both the Resource Status Server, and the Resource Requirement Database 

before it computes the schedule and sends it to the MSHN Daemon. 

Although the Client Libraries are the initiators of many of the communication 

chains through the MSHN system, other chains are initiated by the Resource Status 

Server. In the case of a violation of a deadline because of a change in resource avail- 

ability, for example, the Resource Status Server will trigger the Scheduling Advisor 

to reschedule a process that would not otherwise meet its deadline. The Scheduling 

Advisor will adapt to the new situation by either changing the format of the process 

or restarting it on a different resource via the MSHN Daemon. This interaction is 

the reverse of the previously described communication chain. Figure 6 shows this 

three-tiered view. 
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Figure 6. Alternate Three-tiered View of MSHN 

Although we have shown several two and three tier views of MSHN, the reader 

should understand that these are only examples. Much larger chains will actually exist 

when the various components are hierarchically replicated. 

C.     SUMMARY 

MSHN and CORBA are both still evolving. MSHN's goal is to deliver end- 

to-end quality of service to adaptive, mission-critical applications in a dynamic, dis- 

tributed, heterogeneous environment. To accomplish this goal, MSHN consists of 

multiple, eventually replicated, and distributed components that must frequently 

communicate through heterogeneous networks. 

In the next chapter, we supply some background concerning the CORBA 2.2 

specification so that the reader can understand why CORBA is a viable candidate 

for supporting these interactions. 
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III.        OVERVIEW OF CORBA 

CORBA is an evolving, open standard, which is regulated by Object Man- 

agement Group (OMG) to bring some order to the rapid and disjoint development 

of object technologies. The OMG is a coalition of over 900 companies, some of 

which are system developers, and others are users. The OMG's main objective is to 

influence the object technologies. They define the Object Management Architecture 

(OMA) Reference Model, upon which all OMG specifications are based. CORBA, the 

most commonly used OMG specification, supports the construction and integration 

of object-oriented software components in heterogeneous distributed environments. 

In this chapter, we provide a brief overview of the CORBA 2.2 specification to give 

a basic understanding to the reader. In the next chapter, we provide a rationale 

for our design decisions concerning the use of CORBA for implementing the proto- 

type of the MSHN client/server architecture. This overview includes definitions of 

some elements from the OMA Reference Model to familiarize the reader with the 

terminology. Additionally, it describes two method invocation mechanisms from the 

specification, as well as two CORBA services, the Naming Service and the Event Ser- 

vice, that we used in our prototypes. For further information, the reader may refer 

to OMG documentation and other references listed in the bibliography of this thesis 

[Ref. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Any reader familiar with the CORBA 2.2 

specification may skip this chapter. 

A.     THE OBJECT MODEL 
Understanding the meaning of the term object, as it is used in CORBA 

specifications, is fundamental to the understanding of CORBA. Although the term 

object is widely used in computer science, this section reviews its exact semantics as 

defined in OMG's OMA Reference Model. 
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1. Objects in OMA 

An application consists of one or more objects. These objects may reside on 

the same or different platforms. An object enforces encapsulation, polymorphism, 

inheritance, and persistency. It provides one or more services that can be requested 

by a client. The same object can serve more than one client, concurrently. An 

object reference is a value that denotes a unique object. Specifically, an object 

reference will identify the same object each time the reference is used in a request 

(subject to certain pragmatic limits of space and time). 

If a CORBA user wants an object to be accessible through multiple CORBA 

vendors, the ORB, on behalf of the user, must assign a unique interoperable object 

reference to that object. For example, a Java client, running on top of IONA 

Technologies OrbixWeb, must be able to invoke a C++ object, running on top of 

Inprise (formerly Borland) VisiBroker for C++, independent of the manner in which 

these different vendors assign object references to objects that are accessed only within 

either domain. 

2. Requests 

Clients obtain services from an object by making requests. A request consists 

of (1) an operation, (2) the name of the object that will respond to the request, (3) 

zero or more (actual) parameters, and (4) an optional request context. The object 

that will perform the operation on behalf of the client is called the target object. 

One possible outcome of performing a service on behalf of the client is returning to 

the client the results, if any, defined for the request. If an abnormal condition occurs 

during the servicing of a request, an exception is returned. 

3. Interface 

Associated with each object is (at least) one interface. A client can request 

any operation specified in an interface. An interface also specifies exceptions that 

may occur during these operations and type definitions required by the client to 
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invoke these operations on the object. An object implements an interface if it can be 

specified as the target object for each operation described by the interface. 

4. Operation 

An operation denotes a service that can be requested from an object. As 

traditional functions in any programming language, an operation has a signature that 

describes the parameters of, and results returned from, that operation. In particular, 

a signature consists of: 

• a specification of the parameters required in requests for that operation; 

• a specification of the type of the result from the operation; 

• an identification of the user exceptions that may be raised by a request for the 
operation; 

• a specification of additional contextual information that may affect the request; 
and 

• an identification of the execution semantics that the client should expect from 
a request for the operation. 

Code that is executed to perform a service is called a method. A method 

defines the implementation details of an operation. 

5. Execution Semantics 

Two styles of execution semantics are defined by the object model. 

• At-most-once: In this model, an object can either return successfully or 
return an exception. If an operation request returns successfully, it was per- 
formed exactly once; if it returns an exception indication, it was performed no 
more than once. 

• Best-effort: A best-effort operation may not have any output parameters, 
any input/output parameters, and may not return any result. The client 
continues immediately after making the request and never synchronizes with 
the completion of the request. If an exception occurs on the object side, the 
client will not be notified of it. 
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B.     THE ARCHITECTURE 
In this section, we motivate the use of remote invocation and outline two dif- 

ferent semantics for it. We also define the invocation mechanisms within CORBA, 

i.e. Static Invocation and Dynamic Invocation. We show how these invocation mech- 

anisms are mapped into the semantics. Finally, we study the components of CORBA, 

including their different responsibilities that are used to provide CORBA's invocation 

mechanisms. 

For simplicity in system development, clients will get some services that they 

need from other objects. When an object and its client reside on the same host, 

they will likely exist in different address spaces. Therefore, a client can no longer use 

local invocation to obtain services. Additionally, the user's application may demand 

more computing resources e.g., memory or CPU, than the local host has. In that 

case, the client needs to go not only across the address space but also across the 

network. To execute a method invocation across address spaces, or across a network, 

we require a new mechanism, remote invocation (see Figure 7). Since clients and 

object implementations are no longer in the same address space, CORBA defines an 

Object Request Broker (ORB), which is a well-known point of contact for both 

client and object implementations (see Figure 8). The client invokes an operation on 

any object through the ORB, which supports the client by providing transparency 

of object location, transparency of object implementation, transparency of object 

execution state, and transparency of communication mechanism between the client 

and the object. 

To facilitate communication between the clients and the objects, CORBA 

supports two types of invocation semantics, synchronous invocation and asyn- 

chronous invocation. Synchronous invocation is blocking. Using this type of invo- 

cation, the client will invoke the method and block until it receives a response from 

the object implementation. Asynchronous invocation is non-blocking. The client will 

invoke the method, continue its computation, and collect the results when they ar- 
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Figure 7. Remote Invocations 

rive.   Figure 7 also illustrates how CORBA communication mechanisms and their 

semantics map into these types of invocation. 

All objects can obtain a reference to the ORB running on their machine by 

calling CORBA's 0RB_init() function. To request a service, clients must furnish an 

Host A HostB 

ORB - Object Request Broker 

Figure 8. The Clients and Objects 
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object reference to the Object Request Broker (ORB). The clients may obtain object 

references in three different ways. 

• A client may obtain an object reference from a CORBA Service, such as the 
Naming Service. The Naming Service simply looks up a name and returns the 
reference associated with that name. We discuss the Naming Service in more 
detail at the end of this chapter. 

• When clients instantiate new objects remotely, they receive the object refer- 
ence as a return value. 

• Finally, clients may use object references that are stored in persistent storage. 
Object references in persistent storage are stringified. To stringify an object 
a client invokes the method object_to_string() from the ORB. It then stores 
this either in a file or a database for future use. When the client needs to invoke 
a method on that object, it can get that string back from the persistent storage 
and reconvert it to an object reference by invoking string_to_object() from 
the ORB. 

The object implementation supplies data for the objects instance and source 

code for the methods of the object. Often the object implementation will use other 

objects and private methods to implement its functionality. Object implementations 

may be written in a variety of languages (e.g., C, C++, Ada, Java, or SmallTalk), 

and may exist in a variety of forms (e.g., separate servers, libraries, one program 

per method, an encapsulated application, or an object-oriented database). With 

additional object adapters, it is possible to support virtually any style of object 

implementation (i.e., a C++ object implementation, an Object Oriented Database 

object implementation). 

Object Adapters are the run-time components of CORBA that sit between the 

ORB and the Object Implementations. The designers of CORBA could have specified 

that the ORB should support many different programming styles and languages (see 

Figure 9). However, this would make the ORB large, complex, and inextensible. An 

alternative is shown in Figure 10. The alternative allows for new programming styles 

(and languages) to be supported without changing the ORB and reduces the size and 

complexity of the ORB. 
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Figure 9. The Relationship between the ORB and the Object Implementation without 
the Object Adapter. 

The Implementation Repository is used by the Object Adapter. The Im- 

plementation Repository is a run-time repository containing access information about 

all of the currently available objects. This access information includes the reference 

for an object, the owner of an object, and a list of users that can launch and invoke 

operations on that object. 

Having understood the motivation for the CORBA components needed by all 

applications, we now turn our attention to components which are only needed for 

Static Invocation and those that are only needed for Dynamic Invocation. 

1.      Static Invocation 

If the client is compiled with the interface of an object implementation, the 

client can invoke that object statically. Static Invocation is easier to use for the 

application developer because the method invocations in the client's source code are 

quite similar to local method invocations. Additionally, compile time type checking 

offers better coverage than run-time type checking.   However, Dynamic Invocation 
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Figure 10. The Relationship between the ORB and the Object Implementation with 
the Object Adapter. 

allows for more flexibility and later binding times, which we will discuss in the next 

section. 

In Static Invocation, the client's platform may still be different from the ob- 

ject's platform. For example, the client may reside on a Windows NT, Intel ar- 

chitecture machine, executing an Orbix ORB, whereas the object may reside on a 

Solaris 2.6, SunSparc architecture machine, executing a Visibroker ORB. Therefore, 

Static Invocation must still provide for interoperability across platforms, as well as 

between vendors. CORBA uses the Interface Definition Language (IDL) and 

General Inter-ORB Protocol (GIOP), in particular Internet Inter-ORB Proto- 

col (HOP), to provide this functionality. IDL is used to describe the interface of 

a CORBA object, independent of the object's platform and the programming lan- 

guage.   The developer compiles an IDL file with an IDL compiler to generate the 
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Figure 11. Generating Client Stubs and Object Skeletons 

Client Stub, the Object Skeleton, and a header file (or header files; see Fig- 

ure 11) for a particular object interface. The Client Stub converts data from the 

client's local data representation, which is platform and language specific, to the 

Common Data Representation (CDR), which is independent of platform and 

language. On the object's platform, the Object Skeleton executes the reverse opera- 

tion (See Figure 12). Figure 11 illustrates the process of generating the Client Stub 

and the Object Skeleton with the IDL compiler. 

We define IDL and ORB interoperability in more detail in Appendix C. A 

sample IDL file and the corresponding output of the IDL compiler, i.e., the Client 

Stub source code, the Object Skeleton source code, and the header file, can be seen 

in Appendix D. 

A CORBA application requires a client implementation, and an object imple- 

mentation, with its servant. The servant implementation instantiates the object or 

objects, registers the object with the Object Adapter, and blocks awaiting requests. 

The developer may designate a period after which, if no requests are received, it will 

execute. Figure 13 illustrates how these stubs and skeletons are linked with the client 
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Figure 12. Components of Static Invocation 

and object source codes at compile-time. 

Using Static Invocation, the client can make synchronous or one-way invocations. 

• Synchronous invocations are blocking calls. When a client invokes the request 
synchronously, it blocks and waits for the response from the server. 

• The client, when making one-way invocations, continues to execute while the 
object processes the request. The client cannot be sure that the server received 
its call(s). Neither values nor exceptions can be returned to the client. 

2.      Dynamic Invocation 

We now describe Dynamic Invocation. The main difference between Static 

and Dynamic Invocation is that in Static Invocation the object's interface is linked 

with the client and in Dynamic Invocation it is not. Therefore, CORBA provides 

a means for clients to identify desired object interfaces at run-time. The Interface 

Repository supports Dynamic Invocation Interface by maintaining a database of the 

interfaces of object implementations that can be dynamically invoked. If a client does 

not have the interface of an object implementation at compile-time, it can obtain the 

interface at run-time from the Interface Repository. Since all interfaces are derived 
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Figure 13. Linking and Compiling 

from a generic CORBA object, the client can then use the CORBA object's interface 

to obtain its own reference. Using this reference, the client can then retrieve infor- 

mation about the interface, i.e., available operations, parameters of those operations, 

and return types, at run-time. 

In the rest of the section, we define only the components required by Dynamic 

Invocation that are different from the components used for Static Invocation, i.e., the 

Dynamic Invocation Interface (DII) and the Dynamic Skeleton Interface 

(DSI). The compiling and the linking of the application are the same as they are for 

Static Invocation. 

DII is a generic stub, which is independent of the actual interface of the target 

object. DII takes the place of the Static Invocation's Client Stub when using Dynamic 

Invocation (see Figure 14). Additionally, the client may call DII to find the name of 

an interface, the arguments of a method, and to create a request object. A request 
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Figure 14. Components in Dynamic Invocation 

object is a proxy object in the client's address space that appears to the client as the 

target object. This proxy object handles encoding of the request, and transmitting 

of the request to the actual target object. 

The client uses the DII to create the request object and to populate it with 

the parameters in the order defined in the operation of the interface. Then, the client 

invokes a method on the target object by using one of the three invocation mech- 

anisms: Synchronous Invocation, One-way Invocation, or Asynchronous Invocation. 

We discussed the first two invocation mechanisms in the previous section. The third 

mechanism, asynchronous invocation, is only available in Dynamic Invocation. 

Asynchronous invocations are made without blocking the client, as in one- 

way invocation. Asynchronous invocation differs from one-way invocation in that 

both results and exceptions can be returned. After results are returned through the 

request object, it is released. 
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The real advantage of Dynamic Invocation lies in the DII's ability to construct 

the method invocation dynamically. This type of invocation is useful if the client 

invokes server objects infrequently or needs to discover them at run-time. However, 

to discover the information about the interface of the object implementation, the 

client needs to make several invocations and each of them may be an expensive remote 

invocation. Therefore, users must be aware of the trade off between the flexibility and 

the cost of getting all the information about the interface at run-time. We address 

this issue again in chapter IV and describe a solution that works well in MSHN. 

On the server side, the requests go through either the Object Skeleton or the 

Dynamic Skeleton Interface (DSI). DSI may take the place of the Static Invocation's 

Object Skeleton. Another advantage of DSI is that it allows for the use of non- 

CORBA objects. We will conclude the discussion about CORBA components by 

illustrating the overall architecture and the relations we have defined so far (see 
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Figure 15). 

C.     SERVICES 

CORBA Services augment and complement the functionality of the ORB. 

They are collections of system-level services packaged with IDL-specified interfaces. 

The use of these services is optional, and they are extremely generic. In this section, 

we discuss two of the most widely used CORBA Services. 

1.      CORBA Event Service 

An occurrence within an object, for which one or more objects specify interest, 

is called an event. A notification is a message, which is sent by an object after an 

occurrence of an event, in order to notify other objects that specified interest in the 

event. 

The CORBA Event Service consists of three main components. The supplier 

is the sender of a notification. The consumer is the receiver of the notification. The 

Event Channel forwards the events from suppliers to consumers.   The suppliers 

and the consumers register for specific events and the channel stores the registration 

information. The suppliers pass an event that they generated to the Event Channel 

and the Event Channel delivers the event to the registered consumers.   To deliver 

these events to and from Event Channels, the application developer chooses one of 

the four following communication models. 
a.        Communication Models 

There are four different communication models in the CORBA 2.2 

Event Service Specification: the push-push model, the pull-pull model, the push-pull 

model, and the pull-push model. 

1. In the Push-Push Model, suppliers are active. They push the notifications 
to the Event Channel and the Event Channel pushes notifications of these 
events to the passive consumers. In this model, the Event Channel plays the 
role of a notifier. 
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Figure 16. The Push-Push Model 

2. In the Pull-Pull Model, consumers are the active initiators. They pull the 
notifications from the Event Channel and the Event Channel pulls the notifi- 
cations from the suppliers. Since active consumers can get notifications from 
passive suppliers via the Event Channel, in this paradigm, the Event Channel 
is called the procurer. 
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Figure 17. The Pull-Pull Model 

3. In the Push-Pull Model, both consumers and suppliers are active initiators. 
The Event Channel plays the role of a queue, where the suppliers push their 
notifications to the channel and the consumers pull them from the queue. 
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Figure 18. The Push-Pull Model 

4. In the Pull-Push Model, the Event Channel is the smart agent and the 
only active component. Both consumers and suppliers are passive. The Event 
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Channel pulls notifications from the suppliers on behalf of the consumers and 
pushes the notifications to the consumers. 
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Figure 19. The Pull-Push Model 

6.        Types of Event Communication 

The event communication can be either generic or typed. In the generic 

case, all requests are passed with generic push or pull operations that use a single 

parameter, of type any (see Appendix C), to package all of the data passed to the con- 

sumer. In the typed event communication, the requests are passed through operations 

defined in OMG IDL. 

1. In Untyped Event Communication the push() call takes in a single argu- 
ment of type any, and the pullO call returns a value of type any. If the 
consumer and supplier do not agree on the actual type, the data received is 
not useful for the consumer, because it cannot be extracted correctly. The 
consumer must verify that the TypeCode, associated with the returned value, 
is the type it expected; otherwise errors can occur. The developer of untyped 
event consumers must provide an implementation for a push() or a pullO 
function that filters the notifications and reacts with the expected behavior. 

2. In Typed Event Communication, a programmer defines an interface that 
is used by the suppliers and consumers. User defined types may be used 
as event types. In typed event communication that uses the push model, 
the supplier may invoke any operation in the intersection of the consumers' 
interfaces. 

2.      CORBA Naming Service 

The association between a name and an object is a name binding. A name 

binding is always defined relative to a naming context. A naming context is also 
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an object that contains a set of name bindings in which each name is unique1. The 

naming context is analogous to a scope in a programming language. An object can be 

bound to different names in the same or different naming contexts, simultaneously. 

However, not all objects must have names in order to be available for clients. [Ref. 

12] 

Binding a name means creating a binding between a name and an object in a 

given naming context. The reverse operation of binding a name, resolving a name, 

is to determine the object associated with a name in a given context. There is no 

absolute name, i.e., a name is always resolved within a given context. 

Since a context is also considered an object, it can be bound to a name in a 

naming context. Binding contexts with names from other contexts creates a directed 

naming graph with nodes and labeled edges where the nodes are contexts. Such a 

naming graph allows complex names to reference an object. Given a context in a 

naming graph, a sequence of names defines a path in the naming graph that can be 

used to navigate in the resolution process. 

The specification of the Naming Service supports distributed, heterogeneous 

implementation and administration of names and name contexts. Namespaces should 

be able to be nested and joined at any point in a graph, independent of their imple- 

mentation. We anticipate that this design will support MSHN's evolving architecture 

to create our hierarchical structure of components. We discuss this issue further in 

chapter IV. 

D.     SUMMARY 
In this chapter, we discussed topics from the CORBA 2.2 specification to famil- 

iarize the reader with this specification before we discuss our design, our experiences, 

xThe developer cannot use the same name more then once in the same naming context because 
it will cause ambiguity. 
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our problems and our solutions. For further information, the reader may refer to the 

CORBA 2.2 specification [Ref. 11]. 
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IV.        DESIGN, LESSONS LEARNED, AND 
QUANTATIVE RESULTS 

Our goal is to determine both (1) how we can best facilitate efficient com- 

munication between the components in our architecture using mechanisms from the 

CORBA 2.2 specification and (2) to determine the run-time overhead of each of those 

mecahnisms. Our justification for choosing particular mechanisms includes extensi- 

bility, scalability, portability, flexibility, and efficiency. 

First we describe how the MSHN architecture would benefit from the both 

the Typed and Untyped Event Service, the Static Invocation Interface (SII), and 

the Dynamic Invocation Interface (DII). Then we discuss how we use the Naming 

Service within MSHN to obtain object references. We report problems we experienced 

and propose solutions. Some solutions recommend, from the user's point of view, 

improvements to the CORBA specification. Finally we describe the experiments that 

we designed to measure CORBA overhead and present our results. 

A.     ALTERNATIVE  CORBA  DESIGNS  FOR  COORDI- 
NATING MSHN COMPONENTS 

MSHN consists of multiple, eventually replicated, distinct distributed compo- 

nents that themselves execute in a heterogeneous environment. These components 

will have widely varying functionality, will come in and out of existence, will com- 

municate via heterogeneous networks, and will execute on different platforms. To fa- 

cilitate the interactions between MSHN's components, we identified four mechanisms 

from the CORBA 2.2 specification for run-time performance examination: both the 

Typed and the Untyped Event Service, the Static Invocation Interface (SII), and 

the Dynamic Invocation Interface (DII). After settling on these four mechanisms, 

we implemented a prototype of MSHN's communication infrastructure using each of 

them. In this section, we describe each of these designs and our design decisions, the 
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problems we encountered, and the solutions we arrived at for our architecture. 

1.      Event Service 

Event Service allows multiple suppliers and multiple consumers to deliver and 

receive notifications for a set of events. An Event Channel transparently permits (1) 

suppliers to send notifications of events and (2) consumers to receive these notifica- 

tions without knowledge of the existence of one another. Hence, the Event Service 

will support transparent replication of MSHN system components for reliability and 

dependability. Event Service enables Client Libraries, linked with different concur- 

rent applications, to communicate with other system components seamlessly. Finally, 

Event Service supports a standard Application Programming Interface (API), e.g., 

for Push-Push model, a single operation push(), taking a variable of type any (see 

Appendix C) as a parameter, which eases development of system components. 

In the previous chapter we described four models for Event Service. However, 

when we started the research, there were only two of them available in industrial 

implementations, the Push-Push Model  [Ref. 16] and the Pull-Pull Model. 

Because using the Pull-Pull Model creates an additional load on the consumers 

and because our servers, in this case the consumers, must minimize required comput- 

ing resources for their functionality, even when there is no event to be delivered on 

the Event Channel, we chose to use only the Push-Push Model. 
a.        Using Event Service in MSHN 

Figure 20 illustrates the use of Event Service to organize communication 

in the MSHN architecture. In this approach, the components of MSHN must register 

themselves as both a consumer and a supplier to the Event Channel.   The Event 

Channel acts as the glue between all of the components and delivers notifications to 

each of them. 
6.        Problems with Initial Approach 

Although this approach helps to organize MSHN's communication, pro- 

viding transparent reliability and scalability, some problems with both performance 
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Figure 20. Using Event Service in MSHN 

and the CORBA 2.2 specification can be seen. Some of the problems with this ap- 

proach are identical to the problems identified by Schmidt and Vinoski in the analysis 

of their stock market application. [Ref. 15] We first summarize their findings in the 

first two items below, Loss of Events in the System, and Problems with the Untyped 

Event Service. Then we enumerate additional problems that are particular to using 

CORBA within the MSHN architecture. 

Loss of Events in the System: Event Service guarantees delivery of 

notifications to all registered consumers as long as the Event Service process does not 

fail1. However, in the Event Service specification, persistency of events in the Event 

1 Although there are many definitions of failure, here we mean that if the Event Service does not 
fail, then all consumers receive the correct value. This agrees with Lamport's definition of failure: 

If the input unit is nonfaulty, then all nonfaulty processes use the value it provides as input 
(so they produce the correct output) [Ref. 17]. 
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Channel is not required. Therefore, if an Event Service process does fail, undelivered 

notifications in the system may be lost. The loss of notifications is fatal for our 

system because we are creating an environment for mission-critical applications. The 

obvious solution for this problem is to redefine the Event Service specification to 

include persistency for the undelivered notifications in the Event Channel. The OMG 

has been defining this requirement in the Notification Service specification [Ref. 11]. 

However, no vendors had implemented this new specification at the time of this 

research. 

Problems with Untyped Event Service: The Untyped Event Ser- 

vice does not specify any way to filter notifications. Therefore when using this service 

all notifications are received by all registered consumers. Passing all of these notifi- 

cations in MSHN, each of which will be discarded by many consumers, through the 

network will increase the network load between the Event Channel and the consumer. 

Additionally, the consumers must filter events and convert the parameters that have 

type any to the type that is expected. In this case, there is an additional and un- 

wanted load on the consumers to process all the events received. Finally, when more 

suppliers, in particular more applications, register with the Untyped Event Channel, 

more events will be generated in the system. Since the Untyped Event Channel de- 

livers each event to all of the registered consumers and the consumers will filter all 

the events, the network load and consumer load will increase rapidly. 

To handle this problem we can use Typed Event Channels, which filter 

the notifications according to their type. With this solution, the consumers receive 

only the notifications for which they register, decreasing the network traffic. This 

solution is shown in Figure 21. In this solution, one Event Channel processes all 

of the notifications and delivers them only to the corresponding consumers. This 

also lightens the loads on the consumers because they avoid having to examine and 

discard events that are not meant for them. However, we note that it increases the 

computational load on the Event Channel.   Later in this chapter we compare the 
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Figure 21. Using Typed Event Service 

run-time performance of Typed Event Channel to Untyped Event Channel using this 

approach in the MSHN architecture. 

Alternatively, since we only have five different types of components in 

MSHN, we may use different channels for each connection between these components. 

In this approach, each Event Channel will only support one notification type. For 

example, for the Client Library - Scheduling Advisor Event Channel, we will have the 

Client Library as a supplier, the Scheduling Advisor as a consumer, and the client 

schedule requests as the types of the notifications. Each MSHN component may 

be replicated by registering the additional identical components to the same Event 

Channel. This solution is shown in Figure 22. 

Obviously a combination of these two solutions may be best. That is, in 

the first solution the Typed Event Channel itself can become a bottleneck. Therefore, 

replication of Typed Event Channels may better fit the MSHN's requirements.   In 
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Figure 22. Using UntypedEvent Service 

this thesis, we focused on the careful analysis of individual solutions rather than 

empirically exploring the exponentially sized solution space that combining these two 

techniques will create. 

How to implement a component that is both a supplier and 

a consumer in a system in order to minimize the run-time overhead: 

All components of the MSHN are both consumers and suppliers. Also perhaps par- 

ticular to MSHN, usually when a component receives a notification, it becomes a 

supplier, generates another notification, and delivers it to the appropriate event chan- 

nel. Figure 23 shows the process of passing notifications from the Client Library to 

the Scheduling Advisor (SA) using the pushO operation, revealing the SA changing 

from a consumer to a supplier. In the Untyped Event Service Push-Push model, the 

supplier (here the Client Library) invokes a default pushO operation on the Event 

Channel which in turn invokes a pushO operation supplied by the developer of the 
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consumer (here the SA). In the push() operation that the developer supplied for the 

SA (as a consumer) the developer of the SA invokes the default push operation on 

the SA - Resource Requirement Database (RRD) Event Channel (which of course, 

invokes the pushO operation supplied by the developer of the RRD). Here the prob- 

lem is to supply the Interoperable Object Reference (IOR) of the SA - RRD Event 

Channel to the pushO operation of the SA. We want to avoid using the Naming Ser- 

vice every time the pushO operation (here the push operation of the SA) is invoked. 

Instead the developer can locate the SA-RRD Event Channel in the servant imple- 

mentation. That is, the servant implementation will obtain IOR for the SA-RRD 

Event Channel, stringify the IOR, and store it in a file as we discussed in Chapter 

III. The pushO operation implementations can retrieve these IORs from the files as 

needed and deliver generated events, thereby pushing the corresponding notifications 

to the channel. 

Therefore, in the Untyped Event Service, the developer of the consumer 

(here the Scheduling Advisor) must override the default pushO operation between 

the Event Channel and the consumer, to react to the notification (here a request for 

a schedule) that the consumer receives. For example, when the Scheduling Advisor 

receives an event from the Client Library requesting a schedule, it will generate a query 

notification for the Resource Requirement Database and deliver it to the Scheduling 

Advisor (SA) - Resource Requirement Database (RRD) Event Channel. In this case, 

the Scheduling Advisor becomes a supplier and requires locating the SA - RRD Event 

Channel. To avoid locating the Event Channel to which the supplier will deliver the 

notification, via the Naming Service inside the pushO operation, the developer can 

locate the Event Channel in the servant implementation and obtain IORs of it. Then, 

the servant implementation can stringify these IORs and store them in files as we 

discussed in chapter III. 
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2.      Remote Invocations 

In this section we discuss using remote invocations in MSHN to coordinate 

the interactions of MSHN components. Since both the Static Invocation Interface 

(SII) and the Dynamic Invocation Interface (DII) have similar remote invocation 

mechanisms, first we define the general problems that we encountered with both and 

then enumerate the additional ones specific to the DII. 

Use of remote invocation can provide the same functionality as described above 

using the Event Service to the MSHN. The most important difference is that the 

replication of the components is not as easy as it is in Event Service. To support 

replication using remote invocation, clients must make multiple invocations rather 

than just one as they would need to in Event Service. 
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a.        General Approach using Remote Invocation 

Figure 24 shows our approach that uses remote invocations (i.e., either 

the Static Invocation Interface (SII) or the Dynamic Invocation Interface (DII)) to es- 

tablish inter-component communication in the MSHN architecture. We selected from 

two communication methods available in both SII and DII: the one-way invocation 

and the synchronous invocation, depending upon whether reliable communication was 

required. 

When using the SII, a component requires compile-time knowledge of 

the IDL interface of the target component from which it will request a service, whereas 

the same component, using the Event Service, makes its request via a standard API 

that is independent of the target component or its functionality. However, when using 

the DII, the components of the MSHN can invoke operations on other components 

without requiring precompiled stubs. Thus, we may substitute different instantiations 
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of system components without requiring a re-linking. Additionally, using the DII will 

allow us to invoke objects using deferred synchronous invocation. Such invocation is 

not available from SII within the current CORBA 2.2 specification. With deferred 

synchronous invocation, the clients may continue their computation instead of waiting 

for the results of the previously invoked operations to be delivered. 
b.        Problems with   Using the Initial Remote Invocation 

Approach 

We now enumerate some problems with our initial remote invocation 

approach. 

Lack of a Standard Thread Mechanism: Our first design decision 

was to implement the remote invocations with threads, i.e., handling each invoca- 

tion at -a component using a different thread. Using threads would avoid any data 

synchronization problems and support fairness for each schedule request. However, 

the CORBA 2.2 specification does not define how the threads must be implemented. 

Therefore, each vendor came up with its own solution, which leads to non-portable ap- 

plications. For example, if you use IONA's Orbix as your development environment, 

and their Filters to implement your threads, you cannot use the same implementation 

on Inprise's Visibroker, because their solution for handling threads uses Interceptors. 

We avoided the non-compliant extensions of the vendor when we im- 

plemented our prototypes. Therefore, we were unable to use threads for any of our 

prototypes, although the usage of threads would have improved throughput of sched- 

ule requests. 

Best Effort Semantics: One way invocation has best-effort seman- 

tics. Thus, there is no guarantee that the requested method is actually invoked. In 

this mechanism, the client continues its processing immediately after initializing the 

request and never synchronizes with the completion of the request. Hence, one way 

invocation is not a good mechanism for most of the MSHN system because it is not 

reliable. 

However, using one way invocations for frequent short-term updates 
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could be cost effective in some cases in MSHN. There are two advantages to selectively 

using best effort asynchronous semantics in the MSHN system between the Client 

Library and the Resource Status Server.  First, the Client Library can continue its 

computation immediately without blocking.   Second, we expect that the Resource 

Status Server will be updated very frequently.  Therefore, we can get the accurate 

status of a resource with the next update instead of using more reliable transmission 

mechanisms. 
c.        Problems with Our Initial Approach that are Specific 

to using DII 

We now enumerate some problems with our initial approach that are 

specific to using DII. 

The Additional Overhead of DII: DII's traditional approach requires 

5-6 method invocations to look-up the interface name, get the operation identi- 

fier/parameters, and create the request, which may also be remote in order to invoke 

a single remote method. This adds a lot of overhead to the run-time performance, 

which would be unacceptable in our MSHN architecture. 

In MSHN however, we know the interface of the components, i.e., the 

operation identifier, the parameters, and the return type when we are developing the 

client applications. Thus, we can obtain the flexibility and benefits of the deferred 

synchronous invocation of DII, without having to pay the overhead of querying the 

Interface Repository for the interface information. We do note that if a deferred . 

synchronous invocation, such as promises [Ref. 18] had been specified as part of 

CORBA's static invocation interface, the use of DII would not be necessary in this 

case. We compare the performance of SII and DII in the results section of this chapter. 

3.      Using the Naming Service 

We used the Naming Service to obtain object references in each of our pro- 

totypes. For static and dynamic invocation interfaces, all components must resolve 

names to obtain IORs via the Naming Service only once, when they are instantiated. 
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References within all components, except the Client Library, are stored in files for 

future use as we defined in.previous section. The components do not use the Naming 

Service unless the IORs that they have are no longer valid. We will use the exception 

handling mechanism in CORBA to catch non-valid IORs and to obtain new valid 

ones by using the Naming Service. 

To improve the run-time performance of the Event Service implementations, 

we registered each component with the appropriate Event Channel. We resolve the 

Event Channel references using the Naming Service. Then we query the Event Chan- 

nels to obtain the references for the Proxy Push Suppliers, stringify them, and then 

store them in files. When a component receives an event, and generates another event 

in response to the one it received, that component reads the appropriate file to obtain 

the stringified reference and uses this reference to push the event to the corresponding 

event channel. 

B.     QUANTITATIVE RESULTS 

We described our design decisions for implementing our prototypes in the 

previous section. In this section, we discuss the performance results of these different 

prototypes. First, we describe our test bed. Then we explain our tests and enumerate 

the results for each of these tests. 

1.      Hardware and Software Used in the Test Bed 

When we began this research we surveyed the available implementations of 

CORBA to determine what services were supported (See Figure 25). Based upon 

the robustness and availability of services, particularly the Typed Event Service, we 

chose IONA Technologies CORBA implementation OrbixMT2.3c, OrbixNamesl.lc, 

OrbixEvent 1.0c (Untyped Event Service) and OrbixEvent 1.0b (Typed Event Service) 

that uses the SunSparc C++ Compiler 4.1. 

We ran our tests on SunSparc Station 10 hosts with 128 MB of RAM each, 

and 300Mhz speed CPUs running the Solaris 2.6 operating system. The hosts were 
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Vendor Nm If Ev Tr Id Rl Cc Ex Po Tx Sc 

Expersof x X X 

Sun X X X X X 

Iona X X X X 

Visigenic X X X 

BEA X 

ICL X X X 

HP X X X X X 

IBM X X X X X X X X 

Chorus 

OOT X X X 

Electra X X X 

Xerox 

BBN X X X 
Nm Naming      Tr Trading Cc Concurrency       Tx Transactions 
Lf Life Cycle    Id Identity Ex Extemalization    Sc Security 
Ev Event Rl Relationships   Po Persistency 

Figure 25. Available Services 

connected through a 100 Mbits/sec Ethernet connection. 

To obtain correct results in the tests that utilize the network, we used Network 

Time Protocol to synchronize the system clocks of the hosts. We found that the sys- 

tem clocks on the SunSparc 10 machines have a skew of approximately 3 milliseconds 

every 15 minutes. Therefore, we synchronized the clocks every 5 minutes and ran 

the tests immediately after the synchronization, in order to minimize the difference 

between the various system clocks. 

2.      Assumptions Made for Performance Analysis 

We determined the overhead of each CORBA mechanism that we described 

earlier on a single machine. Additionally, we compared reponse times over the network 

of the various CORBA mechanisms. To compare the overhead, we measured the total 

time required to service 1000 scheduling requests. This interval begins when the Client 
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Figure 26. The Emulation of MSHN Communication Infrastructure 

Library requests a schedule from the Scheduling Advisor and includes all processing 

until the time that the Client Library receives a response. This duration includes the 

time spent querying the Resource Requirement Database (RRD) and the Resource 

Status Server (RSS). At the time of the testing we did not have a fully functional 

RRD, RSS and SA. We emulated the SA's execution by having the SA thread that 

was computing a schedule pause for .5 second (see Figure 26). We chose this duration 

based upon the average times to execute 11 algorithms proposed by Siegel [Ref. 19] 

for MSHN's repertoire. Because we expect the RRD and the RSS to be very efficient, 

we did not force them to pause. In any case, our experiment can easily be repeated 

by replacing the RRD, the RSS, and the SA with their actual functionality once they 

are completed. 

We ran all tests on a single machine and all tests, except the non-CORBA 

tests, over the network using four workstations to emulate each of the Client Library, 

the RSS, the RRD, and the SA respectively. All single machine CORBA tests were 

executed using four different processes:   one emulated all Client Library requests 
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and the other three emulated the RSS, the RRD, and the SA, respectively. The 

non-CORBA single machine tests executed completely in a single process, with all 

MSHN calls being implemented as ordinary C++ function calls. In implementing 

both the static invocation and dynamic invocation, we used synchronous semantics. 

We suggest the use of asynchronous invocation in the future work section of the next 

chapter. We did not have time to implement a fully optimized version of the MSHN 

communication using sockets to determine the CORBA overheads when running over 

the network. However, for a class project, Schnaidt and this author implemented 

another system which we report in a technical report [Ref. 20]. In the following 

paragraphs, we draw some conclusions based both on these experiments and those 

reported there. 

3.      Test Results and Remarks 

In this section, we discuss the performance results of the four different proto- 

types that we described in previous section. 

To assess the overhead of CORBA, we included one non-CORBA test. This 

base case consists of an application linked with all MSHN components and execut- 

ing as a single process on a single host. This non-CORBA test uses local method 

invocation to achieve MSHN component intercommunication. We can compare the 

test cases that use CORBA mechanisms to interconnect MSHN components, all of 

which are running on the same host as the applications, to this base case in order 

to assess CORBA's overhead. We then compare these tests against ones where the 

MSHN components are distributed across different machines. 

The average interarrival rate of scheduling requests will vary with the installa- 

tion and time of day. Therefore we ran all of our tests for two different circumstances. 

In the first situation, the interarrival rate of the requests is less than the service time, 

i.e., each request is completed by the system before the next request arrives. The 

second case represents intermittent bursty loads. In this case, the interarrival rate of 

the requests is greater than the service time, i.e., some requests must be queued to be 
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handled later. The first case is important in determining performance under normal 

conditions, but it is equally important for us to determine that the system neither (1) 

fails completely when heavily loaded, nor (2) incurs overhead that is exponential in 

the number of requests pending. Indeed, we did encounter implementations of typed 

event service, which is very new to the industry, that could not pass our stress test. 

However, in saying this we must also express our gratitude to IONA for letting us 

use a Beta version of their software, when no one else even had any version that we 

could use. 

We wanted to initially determine the amount of time required for (1) an ap- 

plication to make a request of the Scheduling Advisor, (2) the Scheduling Advisor to 

query the RRD to determine what resources are required, (3) the Scheduling Advisor 

to query the RSS to find out the status of these resources, (4) the Scheduling Advisor 

to compute a schedule and to return it to the application, and (5) the application to 

execute and update the RSS and RRD, once each. We first put timers around the five 

steps and saved the intervals for many applications. Unfortunately, we found that, 

for our base case, the granularity of the clock was insufficient to accurately measure 

the difference between the steps above and the total time to compute a schedule and 

execute the application. We, therefore, modified our normal load case so that we set 

a timer, generated a request for a schedule, awaited the schedule, then generated the 

next request. In this way, we generated 1000 requests, and recorded the total amount 

of time to process all of them. In this case, we used synchronous calls in both DII 
2and SII implementations because we had to await a schedule before submitting the 

next request. For both Typed and Untyped Event Service implementations, we forced 

the application to wait for the response of the previous request before starting a new 

one even though such programming style is counter to the intentions of the designers 

of the Event Service. Although it is reasonable for all other calls to be synchronous, 

updates to the RRD and RSS would always be asynchronous. Because we were not 

2 We used the function invoke () for DII. 
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using a multi-threaded base case, we could not make these calls asynchronous in the 

base case. In order to compare similar situations in local method invocation, SII, 

DII, and Event Service, we chose to delete these calls from this set of tests. Because 

requests are generated consecutively, and because each request will use synchronous 

semantics to make the invocations we call this set of tests consecutive synchronous 

tests. 

To simulate the case where lots of requests occur within a short time frame, 

in our base case, we generated interrupts every .06 seconds. Our interrupt handler 

submitted a new request to the Scheduling Advisor. For this set of tests, we used 

asynchronous calls within the application to start the schedule request chain in the 

DII and SII implementations 3. Since asynchronous communication is the intended 

behaviour for the Event Service, in'this test case, the application simply executed the 

pushO function within the Client Library for the Event Service implementations. 

From now on we will call this set of tests the bursty asynchronous tests because 

the requests will arrive faster than the expected required service time and they will 

queue up for the Scheduling Advisor. In this case, we included the update RRD and 

RSS calls for SII, DII, and the Event Service implementation, even though we did 

not for consecutive synchronous tests. 

We summarize our quantitative results in Figure 27. The times shown are the 

actual execution times in seconds for 1000 requests. We have included a scheduling 

time of .5 seconds per request and have not simulated the execution time of the 

application. 

Before we analyse our results, we would like to discuss two Unix system calls 

that we used to simulate the .5 seconds scheduling time as well as the bursty request 

arrivals. We used the select () system call's timeout parameter to emulate the time 

required for the Scheduling Advisor to compute a schedule in all except the bursty 

asynchronous base case. We initially also used the select () system call in the base 

3We used the function send_oneway() for DII, and one-way semantics for SII. 

51 



Configuration Communciation 
Mechanism 

Local 
for 1000 Requests 

Network 
for 1000 Requests 

Consecutive 
Synch. 

Non-CORBA 500.1 N/A 
SII 511.4 520.0 
DII 530.1 530.4 

Untyped Event 607.4 593.9 
Typed Event 580.5 779.2 

Bursty 
Asynch. 

Non-CORBA 500.1 N/A 
SII 510.8 510.8 
DII 521.2 520.2 

Untyped Event 592.8 564.4 
Typed Event 

(for 100 requests) 
64.7 63.6 

Figure 27. Results of the Generic Experiments 

case as well, but ran into problems when compiling that call with ualarmO system 

call that we used to generate the next request in the bursty asynchronous tests. After 

the ualarmO signal handler completed, control which had resided in the select() 

call returned instead to the statement after it, causing the emulated schedule to 

prematurely complete. The average of the values we obtained from calling select 0 

was 125 microseconds above the timeout value of .5 seconds. As mentioned above, we 

used the system call ualarmO to give asynchronous behaviour to the C++ function 

call implementation and observed an average 10 milliseconds error for a set value 

of 60 milliseconds. Both of these biases are beneath the typical Unix system call 

granularity of 10 milliseconds. 

We note that, of course, there is significant overhead in using CORBA between 

address spaces as compared to local method invocations within a single address space. 

We note also that a similar result was shown in our technical report between CORBA 

and local Inter Process Communication (IPC) [Ref. 20]. We conclude in that report 

that the efficiency of the socket implementation on one machine is due to use of shared 

memory in that socket implementation. We also note that even if the CORBA im- 

plementations were to use shared memory, when available, that similar performance 
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Communication Mechanism Added Overhead 
SII 10.5 
DII 20.0 

Untyped Event 64.2 
Typed Event 13.5 

Figure 28. Added Overhead for Bursty Asynchronous Test Case over the Network 

enhancement would not be obtained. This is because the CORBA specification re- 

quires all parameters of the request to be converted to External Data Representation 

(XDR) and then sent to the target object no matter where the target object resides. 

Also, in that report we noted that a CORBA implementation, which required less 

than 5% of the time to implement as compared to the socket implementation, had 

only 20% more run-time overhead. Since our results are comparable here, and because 

we did not have sufficient time to implement a highly optimized MSHN socket imple- 

mentation, we will limit the remainder of our remarks to comparing the performance 

of various CORBA implementations. 

Since local invocation is done within the same address space, the performance 

of the local invocation as compared with any of other prototypes is substantially faster 

than the CORBA implementations, as would be expected. The Static Invocation 

Interface is generally the fastest mechanism available in the CORBA specification 

[Ref. 5]. Even though the Dynamic Invocation Interface is generally considered much 

slower compared to the SII, the performance of the DII given our environment, i.e., 

at component development time we know the interface of the component, is close to 

the SII performance. Therefore a developer need not necessarily fear the overhead 

of DII as observed by Orfali et.al. [Ref. 5], if their situation is similar to ours. 

However, we note that it would probably be more efficient if CORBA makes deferred 

synchronous semantics available in SII. Therefore, a developer can use this approach 

especially if deferred synchronous calls, which are at this time specified for DII, are 

more appropriate for the application. 

The comparison between the consecutive synchronous and bursty asynchronous 
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CORBA implementations seems surprising at first glance. One would normally expect 

that a system loaded with bursty requests would not perform better than an unloaded 

system. To understand the reason for this performance improvement, we must de- 

scribe more detail about our CORBA implementation than we previously gave. In 

particular, we now further elaborate on the client application's use of Naming Service. 

In the consecutive case, the Client Library obtains the IOR of the Scheduling Advisor 

from the Naming Service immediately prior to making each request. However, in the 

bursty asynchronous case the Client Library obtains all the IORs asynchronously in 

the first 60 seconds of the actual run-time. Thus in the bursty asynchronous case 

obtaining the IORs overlaps the actual computation. Unfortunately, in the actual 

MSHN implementation, unless it is executing on a dual processor machine we would 

not expect to see this. What is happening is that the emulated Scheduling Advisor is 

actually blocked while the Naming Service is resolving addresses. In an actual imple- 

mentation, both would require the use of a CPU. We also observe that there may be 

another source of this speedup: the Client Library process can send more than one 

request within its use of CPU, which results in fewer context switches. 

In the 4-machine, networked tests we did not need an excessive number of 

context switches between our components and object request broker. Multiple pro- 

cesses could actually execute simultaneously, and actual run times were smaller. Even 

though we could not get paralellism in our distributed communication intensive ap- 

plication [Ref. 20], we observed speedup in MSHN because the Scheduling Advisor 

is computation intensive. 

As seen in Figure 27, the Untyped Event Service adds more overhead than 

either the SII or the DII because the Event Service process is the bottleneck in the 

system. Of course, in an overall evaluation this additional overhead must be balanced 

against the ease of replication of system components that it provides. We suspect 

that much of this overhead is caused by the time required to insert parameters into a 

type any variable for the supplier component and the time that the consumer spends 
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Replication 
Mechanism 

All Hosts SA and Client 
Hosts 

RRD and RSS 
Hosts 

Bursty 
Asynch. 

Two Event Pro. N/A 574.38 561.44 
Four Event Pro. 560.98 N/A N/A 

Consecutive 
Synch. 

Two Event Pro. N/A 599.05 593.82 
Four Event Pro. 593.82 N/A N/A 

Figure 29. Results of the Untyped Event Service Special Cases 

to extract the values from a type any variable. Therefore, this mechanism may not 

be a choice for a developer unless it is really required for the application. 

In addition to the tests described above, we replicated the Untyped Event 

Service to see whether any speedup could be obtained by distributing the load of the 

Event Service process. First we created two Event Service processes one on the same 

host as the application and the other on the same host as the Scheduling Advisor 

in an attempt to achieve speed up. This approach performed worse than the single 

Event Service process. Upon analysis, we determined that it introduced unnecessary 

network communication and placed the Event Service processes on the busiest hosts. 

Then we moved the Event Service processes to the same hosts as the RRD and the 

RSS, respectively. Figure 29 shows the speedup we observed with this configuration. 

After these results we decided to try four Event Service processes. Unfortunately, 

probably because of the excessive amount of communication, this approach performed 

no better than using a single Event Service process. 

In MSHN's Typed Event Service implementation, all of the communication 

is passed through a single process. The implementation that we used could not ef- 

ficiently handle 1000 requests in a minute. In the bursty asynchronous case, we 

observed starvation in communication. We believe that starvation occured because 

the Client Library was updating the RRD and the RSS whereas the Scheduling Ad- 

visor was querying these two components to compute the schedules simultaneously. 

On the other hand, in the consecutive synchronous case, the Typed Event Service 

process handled 1000 requests probably because we excluded the update calls to the 
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RRD and the RSS and because the maximum number of requests handled during the 

peak time was substantially less in this test. Hence, we believe that the Typed Event 

Service is not ready to be used in the MSHN. In Figure 27 we represent 100 requests 

for the bursty asynchronous case. Since the Typed Event Service implementation 

that we were using did not allow us to replicate it, we could not run a replicated test 

with the Typed Event Service as we did with the Untyped Event Service. 

C.     SUMMARY 

In this chapter, we described how the MSHN architecture would benefit from 

both the Typed and Untyped Event Service, the Static Invocation Interface (SII) 

and the Dynamic Invocation Interface. (DII). Then, we discussed how we used the 

Naming Service within MSHN to obtain object references. We also reported prob- 

lems we experienced and proposed solutions. Some solutions recommended, from the 

user's point of view, improvements to the CORBA specification. Finally we described 

the experiments that we designed to measure CORBA overhead and presented our 

results. The overhead added by CORBA for distributed component communication 

of MSHN system varied from a low of 10.6 miliseconds/service request to a high of 

279.1 miliseconds/service request on UltraSparclO boxes with Solaris 2.6 Operating 

System connected via 100 Mbits/sec Ethernet. 

56 



V.        SUMMARY AND FUTURE WORK 

In the Heterogeneous Processing Laboratory at the Naval Postgraduate School, 

we are designing, implementing, and testing a resource management system called the 

Management System for Heterogeneous Networks (MSHN). MSHN is part of the De- 

fense Advanced Research Projects Agency (DARPA) sponsored Quorum program. 

MSHN's goal is to support the execution of multiple, disparate, adaptive applica- 

tions in a dynamic, distributed heterogeneous environment. To accomplish this goal, 

MSHN consists of multiple, eventually replicated, distinct distributed components 

that themselves execute in a heterogeneous environment. These components will 

have widely varying functionality, will come in and out of existence, will communicate 

via heterogeneous networks, and will execute on different platforms. These system 

components are also likely to be written in different programming languages. We 

can, of course, at the expense of a great deal of programmer's time, implement from 

scratch, specialized naming services to locate the appropriate component at run-time 

and specialized communication mechanisms to enable communication between these 

heterogeneous platforms. Alternatively, we can use a general tool, such as Common 

Object Request Broker Architecture (CORBA), to achieve the same functionality 

while reducing the development time. Experience with generalized systems such as 

CORBA, has revealed that the reduced development time cost comes at the expense 

of run-time performance, which can be critical, in real-time applications. This thesis, 

therefore, investigates the utility and overhead of communication mechanisms from 

the CORBA 2.2 specification to support MSHN's inter-component communication. 

In the second chapter of this thesis we provided a brief Client/Server approach for 

the MSHN architecture. For further information about the MSHN, the reader may 

refer to a technical report describing the entire project [Ref. 4]. 

CORBA is an evolving, open standard, which is being defined by the Object 

Management Group (OMG) to bring some order to the rapid and disjoint development 
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of object technologies. The OMG is a coalition of over 900 companies, some of 

which are system developers, and others are users. The OMG's main objective is to 

influence the object technologies. They define the Object Management Architecture 

(OMA) Reference Model, upon which all OMG specifications are based. CORBA, the 

most commonly used OMG specification, supports the construction and integration 

of object-oriented software components in heterogeneous distributed environments. 

In the third chapter of this thesis, we provided a brief overview of the CORBA 

2.2 specification to give a basic understanding to the reader about these two concepts. 

This overview includes definitions of some elements from the OMA Reference Model 

to familiarize the reader with the terminology. Additionally, it describes two method 

invocation mechanisms from the specification, as well as two CORBA services, the 

Naming Service and the Event Service, that we used in our prototypes. For further 

information, the reader may refer to OMG documentation and other references listed 

in the bibliography of this thesis  [Ref. 5, 6, 7, 8, 9, 10, 21, 11, 13, 12]. 

Our goal is to determine both how we can best facilitate efficient commu- 

nication between the components in our architecture using mechanisms from the 

CORBA 2.2 specification that were briefly discussed in the third chapter as well as 

to determine the run-time overhead of each of those mecahnisms. To build MSHN's 

communication infrastructure, we identified four mechanisms from the CORBA 2.2 

specification for run-time performance examination: the Static Invocation Interface 

(SII), the Dynamic Invocation Interface (DII), Typed Event Service and Untyped 

Event Service. Our justification for choosing particular mechanisms includes exten- 

sibility, scalability, portability, and flexibility in a cost-effective way. After settling 

on these four mechanisms, we implemented a prototype of MSHN's communication 

infrastructure using each of them, and measured their respective run-time overhead. 

In the fourth chapter, we provide a rationale for our design decisions concerning the 

use of CORBA for implementing the prototype of the MSHN Client/Server archi- 

tecture. In this chapter we describe how the MSHN architecture would benefit from 
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both the Typed and Untyped Event Service, the Static Invocation Interface (SII) and 

the Dynamic Invocation Interface (DII). Then, we discuss how we use the Naming 

Service within MSHN to obtain object references. We report problems we experienced 

and propose solutions. Some solutions recommend, from the user's point of view, im- 

provements to the CORBA specification. Finally we describe the experiments that we 

designed to measure CORBA overhead and present our results. The overhead added 

by CORBA for distributed component communication of MSHN system varied from a 

low of 10.6 milliseconds per service request to a high of 279.1 milliseconds per service 

request on UltraSparclO machines with Solaris 2.6 Operating System connected via 

100 Mbits/sec Ethernet. 

A.     FUTURE WORK 
In this thesis, we focused on the run-time performance of different prototypes 

implemented using four different communication mechanisms from the CORBA 2.2 

specification. Since MSHN requires a cost-effective communication infrastructure, 

i.e., a fast but also a reliable communication infrastructure, we recommend a further 

examination of these different communication mechanisms with regard to reliability 

because the fastest communication mechanism may not be reliable enough for MSHN. 

We anticipate a hierarchical structure for the MSHN components similar to 

the Domain Name Service, system of the Internet. Further investigation is needed to 

determine how to use the Naming Service to organize MSHN's component structure 

to locate the hierarchical components in a sparce WAN. 

When locating an object in the system using the current ORBs and Nam- 

ing Service, an application obtains an object reference to the first available object 

implementation. This random choice may result in poor service. We expect that 

research results from Management System for Heterogeneous Networks will influence 

the evolving CORBA specification so that the specification will include smarter re- 

quest brokers and smarter trading services. 
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APPENDIX A. ABBREVIATIONS 

BOA - Basic Object Adapter 

COM - Component Object Model 

CORBA - Common Object Request Broker Architecture 

DoD - Department of Defense 

DII - Dynamic Invocation Interface 

DSI - Dynamic Skeleton Interface 

GIOP - General Inter-ORB Protocol 

IDL - Interface Definition Language 

HOP - Internet Inter ORB Protocol 

IOR - Interoperable Object Reference 

IR - Interface Repository 

MSHN - Management System for Heterogeneous Systems 

OMA - Object Management Architecture 

OMG - Object Management Group 

OODBMS - Object Oriented Database Management Systems 

ORB - Object Request Broker 

RPC - Remote Procedure Call 

RSS - Resource Requirement Database 

RSS - Resource Status Server 

SA - Scheduling Advisor 

TCP/IP - Transmission Control Protocol / Internet Protocol 
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APPENDIX B. COMPONENTS OF MSHN 
ARCHITECTURE 

We gratefully acknowledge Mathew Schnaidt [Ref. 22] for letting us use his 

descriptions of the MSHN components verbatim in this appendix. They are included 

for the convenience of the reader. 

1.      CLIENT LIBRARY 
The client library is linked with both adaptive and non-adaptive appli- 

cations. It provides a transparent interface to all of the MSHN services [Ref. 
1]. The client library performs at least the following functions: (1) it inter- 
cepts system calls to record resource requirements; (2) it forwards requests to 
start another process, when appropriate, to the Scheduling Advisor; and (3) it 
intercepts and performs the appropriate action on requests from the Schedul- 
ing Advisor to adapt. It forwards the recorded resource requirements to the 
Resource Requirements Database. The final implementation of MSHN will 
be able to forward the performance measurements and resource requirements 
through the MSHN daemon when that is more efficient. 

2.      SCHEDULING ADVISOR 
The Scheduling Advisor performs the highly complex task of scheduling 

multiple jobs, from multiple users, onto one (or several) computers from a pool 
of heterogeneous computing platforms. The sophisticated algorithms that the 
Scheduling Advisor will use to make decisions are beyond the scope of this 
thesis. However, this research requires knowledge of the interfaces presented 
by the Scheduling Advisor. The Scheduling Advisor will accept scheduling 
requests from the client libraries. The Scheduling Advisor will query both 
the Resource Status Server and the Resource Requirements Database. These 
queries must respond with near real-time information on the status (load) 
of the VHM, and the resource requirements of the application. Once the 
Scheduling Advisor receives this load information, it can calculate a mixture 
of computing and network resources that will, with high probability, deliver 
the requested quality of service. 

Additionally, in case of a significant deviation from the initial resource 
status estimate, the Scheduling Advisor will receive notification from the Re- 
source Status Server. For example, if a communications path is severed, or 
a machine fails, the Scheduling Advisor will be notified and can recalculate a 
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Figure 30. MSHN's Software Architecture 

new scheduling solution for the affected applications. The Scheduling Advisor 
may then signal the client library and advise it that the application should be- 
gin using a different algorithm, or perhaps recommend that it shift execution 
to a different set of resources. 

3. RESOURCE REQUIREMENTS DATABASE 
The Resource Requirements Database is a repository of information 

pertaining to the execution of user applications. A job consists of the code 
and data required to execute a user's application. This database contains 
statistics on the run-time characteristics of jobs, such as CPU, memory, and 
disk usage. The Resource Requirements Database provides this information 
to the Scheduling Advisor upon request. The client libraries update it. 

4. RESOURCE STATUS SERVER 
The purpose of the Resource Status Server is to maintain a repository 

of the three types of information about the resources available for MSHN to 
schedule: the relatively static (e.g. CPU speed), the moderately dynamic (e.g., 
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operating system version), and the highly dynamic information (e.g., network 
load). The Scheduling Advisor will query the Resource Status Server to ob- 
tain an initial estimate of the currently available computing and networking 
resources. After making a scheduling decision, the Scheduling Advisor will 
notify the Resource Status Server of the additional loads that it expects the 
client application to place on the compute and networking resources. Much 
of this thesis is dedicated to determining the best mechanisms for obtaining 
this most dynamically changing type of information for network resources. 
[SCHN98] 

Periodically during the execution of an application, the client library 
will update the Resource Status Server with status of the computing and 
networking resources in use by the application. Also, as described in subsection 
2 above, the Resource Status Server sets up a callback with the Scheduling 
Advisor. If the perceived loads on the resources fall outside a specified range, 
the Resource Status Server will notify the Scheduling Advisor. 

5.      THE MSHN DAEMON 
The MSHN Daemon executes on all compute resources available for 

scheduling by the MSHN Scheduling Advisor. It is used to begin and control 
the execution of processes that are submitted to MSHN. 
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APPENDIX C. INTEROPERABILITY IN 
CORBA 2.2 

In this appendix we define two of the components of CORBA in more detail 

that are responsible for interoperability. The Interface Definition Language is used 

to declare interfaces in a manner that is independent of platform and programming 

language. The General Inter-ORB Protocol supports the simultaneous use of CORBA 

implementations from multiple different vendors. This functionality is required to 

support availability, simplicity, scalability, generality, and architectural neutrality. 

1.      THE INTERFACE DEFINITION LANGUAGE (IDL) 

IDL is a descriptive language that has the same lexical rules as C++. In ad- 

dition, new keywords are introduced to support distributed systems related concepts. 

IDL allows the developer to define new, more complex interfaces by inheriting from 

existing ones. 

a. The Structure of CORBA IDL 

CORBA IDL consists of several elements. Modules provide a namespace in 

which to group a set of interfaces (see Figure 31). If the developer is using a C++ to 

IDL mapping, depending upon the compiler, the modules may be mapped to C++ 

namespaces or C++ classes. Interfaces and operations were discussed in section A 

of chapter III. Hence, we do not elaborate on those any further here. We will now 

discuss data types supported by IDL. 

b. CORBA IDL Types 

As we have seen in the previous section, OMG IDL provides declarations 

similar to those of the C programming language that can be used to associate an 

identifier with a type. OMG IDL uses the typedef keyword to associate a name with 

a data type; a name is also associated with a data type via the struct, union, and 
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module <identifier> 

{ 
<type declaxations> 

<constant declarations> 

<exception declarations> 

Defines a naming context 

interface<identifier> [:<inheritance>] 

{ 
<type declarations> 
<constant declarations> 

<exception declarations> 
[<op\_type] <identif ier> (<parameters>) 

[raises exception][context]; 

Defines a CORBA class 

Defines a method 

[<op\_type]<identifier>(<parameters>) 

[raises exception][context] ; 

Defines a method 

interface<identifier> [:<inheritance>] 

{ 

Defines a CORBA class 

} 

} 

Figure 31. The Structure of an IDL File 
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enum declarations. The data types supported by OMG IDL are classified as (1) basic 

types, (2) constructed types, and (3) template types. 
i.        Basic Types 

The basic types, except type any, are similar to the basic types one can 

find in any programming language. The supported basic types are 

• long 32 bit arithmetic types (signed and unsigned), 

• short 16 bit arithmetic types (signed and unsigned), 

• IEEE 754-1985 floating point types, 

• IEEE 754-1985 double point types, 

• IEEE 754-1985 long double point types, 

• character, 

• wide character, 

• Boolean, 

• octet 8-bit value, 

• any. 

The type any is a tagged type specific to CORBA that can hold any 

built-in or user defined types. When the type of the parameter to an operation cannot 

be determined at compile-time, a parameter of type any should be used. At run-time, 

a value of any type, including user defined types, can be inserted into a variable of 

type any and passed to an operation. The target object that receives the parameter 

of type any can examine the parameter's TypeCode, and determine the actual type 

passed to it. 
ii.       Constructed Types 

The constructed types that are supported by OMG IDL are as follows: 

• Struct - a struct is an aggregate data type that is built using other data types. 
(similar to C/C++ structs) 

• Discriminated Union - OMG IDL unions must be discriminated. The union header 
must specify a typed tag field. An OMG IDL union value is constructed with a 
type discriminator and a value chosen from a set of possible types specified in a 
union definition. 

• Enumeration - an enumerated value is chosen from an ordered list of identifiers. 
Typedef declarations can also be used to specify an enumerated type [Ref. 11]. 
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iii.      Template types 

The following template types are supported by OMG IDL. 

• String - a string is similar to a sequence of characters.   If a maximum size is 
specified in a declaration, the string is bounded. Otherwise, it is unbounded. 

• Sequence - a sequence is a one-dimensional array with a compile-time defined 
maximum size and a run-time instantiated length. 

2.  THE GENERAL INTER-ORB PROTOCOL (GIOP) 
The General Inter-ORB Protocol (GIOP) defines ORB interoperability stan- 

dards. GIOP can be mapped on any connection-oriented transport protocol. A 

specific mapping of GIOP, which runs over TCP/IP connections, called the Internet 

Inter-ORB Protocol (HOP) is also defined in this section. CORBA specification 2.2 

states several goals of General Inter ORB Protocol: 

• Widest possible availability, 

• Simplicity, 

• Scalability, 

• Low cost, 

• Generality, 

• Architectural neutrality. 

To accomplish these goals, the GIOP specification consists of several different 

elements. These elements are 

• the Common Data Representation (CDR), 

• the GIOP message formats, 

• the GIOP transfer assumptions, and 

• the Internet Inter-ORB Message Transport. 

The following paragraphs provide an abstract description of each of the ele- 

ments. 
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a. The Common Data Representation (CDR) 

A fundamental problem in interoperability is to overcome the different data 

representations, including byte orders of different platforms, and different languages. 

The Common Data Representation (CDR) addresses this problem by defining how to 

represent basic types and TypeCode's independent of platform and language. 

b. GIOP Message Formats 

The GIOP supports all of the functions and behaviors of the CORBA specifi- 

cation including dynamic object location with several and simple message formats. 

c. GIOP Transfer Syntax 

The GIOP defines connection management, request multiplexing, and con- 

nection usage over any connection-oriented transfer protocol. In particular, GIOP 

specifies how a connection between a client and server ORB may be shared by differ- 

ent requests while dictating message ordering rules during these transfers. 

d. Internet Inter-ORB Protocol (HOP) 

The HOP specification describes the transfer syntax that must be used when 

GIOP is implemented on top of TCP/IP, that is, how ORBs open TCP/IP connections 

and use them to transfer GIOP messages such as those between the client's and 

server's ORBs [Ref. 11]. Since HOP runs directly on top of TCP/IP, it is platform 

independent. Objects are identified and located through the Interoperable Object 

References, which are defined in the CORBA 2.2 specification. Each IOR has an HOP 

profile that contains the Internet address and port number of the object's server and 

a key value used by the server to find the specific object described by the reference. 
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APPENDIX D. A SAMPLE INTERFACE 

In this appendix, we introduce the reader with a sample IDL file based on our 

Dynamic Invocation Interface (DII) prototype. 

Notice that in the IDL file in Figure 32, there is a specific keyword oneway 

which indicates that the client will run concurrently with the object when this method 

is invoked. The developer of the client need not be aware that this is the case because 

one-way static invocation is only permitted with functions that have no input/output 

parameters, no output parameters, and no return value. In contrast, Dynamic Invo- 

cation clients must be aware of which type of invocation they are making depending 

on the signature of the operation. 

// This file includes the interface of the Resource Status Server. 
// The type definitions are in mshn_common.idl file. 
// 
//**************************************************************** 

#ifndef _RSS_IDL_ 

#define _RSS_IDL_ 

// start with the type definitions 
#include "mshn_common.idl" 

interface RSS { 

oneway void updateRSS (in RSS_St updateRStat); 

RSS_St queryRSS (in RSSReq_St req); 

}; 
#endif 

Figure 32. A Sample IDL File 
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// This file includes the type definitions used in MSHN's prototypes. 

// 

// 

#ifndef _MSHN_C0MM0N_IDL_ 

#define _MSHN_C0MM0N_IDL_ 

// start with the type definitions 

typedef long memSizeType; 

typedef long cpuSpeedType; 

typedef long discSpaceType; 

typedef unsigned long IPadressType; 

typedef long hostlDType; 
typedef long netBWType; 

typedef long netLatencyType; 
typedef long processNameType; 
typedef long noOfAccessType; 

typedef long sizeOfAccessType; 

struct RSS.St 

■c 
hostlDType hostID; 

cpuSpeedType cpuLoad; 

memSizeType memLoad; 
cpuSpeedType cpuLoad; 

memSizeType memLoad; 

discSpaceType discLoad; 

netBWType netBWLoad; 

>; 

netLatencyType netLatency; 
netLatencyType networkLatency; 
memSizeType        cacheLoad; 

Figure 33. The Type Definitions Used in Prototypes 
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struct RRD_St 

-C 
processNameType prName; 

noOfAccessType noOfLocalAccess; 
noOfAccessType noOf RemoteAccess; 

sizeOfAccessType sizeOfLocalAccess; 

sizeOfAccessType sizeOfRemoteAccess; 

memSizeType minMemReq; 

netLatencyType networkLatency; 

memSizeType   cacheLoad; 

>; 

struct ClientReq_St 

■C 

processNameType prName; 

hostlDType hostID; 
string SA_ref; 

}; 

struct RRDReq_St 

i 
processNameType prName; 

string SA_ref; 

}; 

struct RSSReq.St { 
hostlDType hostID; 
string SA_ref; 

}; 

Figure 34. The Type Definitions Used in Prototypes, continued 
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struct ClientResp_St { 
- hostlDType hostID; 

hostlDType targetHostID; 
hostlDType hostID; 
hostlDType targetHostID; 
processNameType prName; 
string RRD_ref; 
string RSS_ref; 

}; 

#endif 

Figure 35. The Type Definitions Used in Prototypes, continued 
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